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ABSTRACT 
This paper presents X-PRT, a new cognitive modeling tool 
supporting activities ranging from interface design to basic 
cognitive research. X-PRT provides a graphical model 
development environment for the CORE constraint-based 
cognitive modeling engine [7,13,21]. X-PRT comprises a 
novel feature set: (a) it supports the automatic generation of 
predictive models at multiple skill levels from a single task-
specification, (b) it supports a comprehensive set of 
modeling activities, and (c) it supports compositional reuse 
of existing cognitive/perceptual/motor skills by 
transforming high-level, hierarchical task descriptions into 
detailed performance predictions.  Task hierarchies play a 
central role in X-PRT, serving as the organizing construct 
for task knowledge, the locus for compositionality, and the 
cognitive structures over which the learning theory is 
predicated. Empirical evidence supports the role of task 
hierarchies in routine skill acquisition. 
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INTRODUCTION 
Starting with Card, Moran and Newell [4] and continuing 
through the present, modeling for a priori predictions of 
human performance on interface-based tasks has matured 
into an established subfield of Human-Computer 
Interaction. The GOMS family of methods have been 
validated by a large research pool  (e.g. 5,6,11), and 
detailed computational theories of human cognitive 

architecture such as ACT-R, Epic, and Soar have been 
applied successfully to models of complex interactive tasks 
[1,15,17,20].  

However, in practice, there has been little use of either the 
GOMS methods or cognitive architectures in an applied 
design context. There are many complex reasons for this 
state of affairs, but one plausible and commonly-assumed 
barrier to the adoption of current methods is that the cost of 
modeling using these methods is too high relative to the 
benefit of the human performance predictions generated. 
Recently the research community has responded with 
modeling support tools that simplify and to some degree 
automate the modeler's task including CogTool [9], 
Behavior Recorder [12], Act-Simple [18], ACT-Stitch [14], 
Apex-CPM [10], G2A [19], and User Modeling Design 
Tool [16]. These efforts represent important individual 
successes, and the work reported here builds on them to 
some degree.  However, a common property of this work is 
that it introduces a set of unfortunate tradeoffs between ease 
of use and predictive power. For example, ACT-R contains 
detailed process theories of declarative and procedural 
learning, but these are not accessible via some of the 
modeling tools [9,12,18] based on ACT-R. Other tools are 
concerned with usability and provide advances by 
automating some aspects of modeling [14,10,19,16], but 
still require time, knowledge of psychology, and 
programming skills beyond the resources available in 
applied design contexts. 

This paper provides an initial report on the development of 
X-PRT, a new tool for developing cognitive models that is 
intended to support modeling activities in service of goals 
ranging from interface evaluation and design to basic 
cognitive research. X-PRT departs from existing efforts to 
build affordable modeling tools in several significant ways. 
First, it supports the automatic generation of predictive 
models at multiple skill levels from a single task-
specification. Second, it directly supports the compositional 
reuse of existing cognitive model components. And third, it 
was designed and implemented from the ground-up with 
user-centered design principles to support a comprehensive 
set of modeling subtasks. It is not an exploration of a single 
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new piece of technology for making modeling easier, but 
rather a complete environment for model development.  

The first two features exploit recent new technical advances 
in cognitive modeling made possible by CORE [7,13,21]. 
CORE stands for Constraint-based Optimizing Reasoning 
Engine and is an implementation of a new general approach 
to cognitive modeling based on constraint-reasoning and 
optimization. X-PRT is the graphical model development 
environment for CORE. Thus, X-PRT is jointly shaped by 
the capabilities of CORE and a ground-up design effort to 
support a comprehensive set of cognitive modeling 
activities. 

A key distinction of X-PRT over other similar efforts is that 
it represents a significant attempt to preserve as much 
predictive power as possible (the “benefit” side of the 
cost/benefit equation) while at the same time lowering the 
barriers to entry in terms of usability and required modeling 
expertise (the “cost” side of the equation). This is an 
especially difficult tradeoff to manage. Typically as 
predictive power is increased, so is the complexity of the 
tool. Therefore, most attempts to date have made significant 
sacrifices to predictive power in an effort to decrease cost. 
However, X-PRT allows the user to take advantage of 
powerful advances in the underlying modeling engine 
(CORE), in particular the ability to simulate users of 
varying skill from a single model. 

The remainder of this paper has the following structure. 
First, there is a task analysis of cognitive modeling, 
breaking it down into its necessary subtasks.  In this 
analysis the difficulties of each subtask are identified 
individually (from the point of view of both design and 
basic research) and used to help derive a set of requirements 
for an effective modeling development environment. Next, 
the design of X-PRT is described, with a focus on how the 
capabilities of CORE are exploited to generate predictions 
at multiple levels of experience from a single model. Next, 
there is a brief overview of the essentials of CORE; the 
reader is referred to [7,13,21] for more complete 
presentations.  Then the empirical human data supporting 
the psychological reality of the learning theory specified in 
CORE is briefly reviewed. Finally, comparisons to other 
approaches and future work are covered. 

AN ANALYSIS OF MODELING WORK 
Breaking down the task of modeling into subcomponent 
tasks provides an ontology for discussing current 
challenges, requirements for an effective modeling support 
tool, and the relative priority of these tasks for different 
user goals. These goals lie along a spectrum between 
modeling to conduct basic cognitive research and modeling 
to evaluate or design/redesign an interface. Later these tasks 
will frame the design of CORE and X-PRT as well as help 
in comparing them to existing tools. 

T1. Specifying Task Knowledge 
Task knowledge (T1) is the specific information the user 
must know to accomplish the task.  The central problem 
from the modeler's point of view in current approaches 
based on cognitive architectures (ACT-R, Epic, Soar) is that 
there is a mismatch between the level at which task 
knowledge must be coded (the 50 ms production-rule level) 
and the level at which the task is naturally specified. 
Programming these systems also requires learning an 
idiosyncratic syntax, and the code can be difficult to debug. 
These problems are exacerbated in learning systems in 
which the architecture itself is generating new code.  As 
noted earlier, approaches that do offer more abstract and 
easier task specifications also offer reduced predictive 
power (e.g., they do not support learning). 

In conducting observational user research (Contextual 
Inquiry method [3]), with modelers doing cognitive 
research tasks, the authors found that users often start with 
similar models and use them as a basis for creating new 
ones. For example, a modeler developed a model of a 
cockpit keypad based on a model of an Automated Teller 
Machine (ATM). However, current systems do not provide 
a systematic way to build more complex models from 
existing components. For example, in the telephone 
operator domain there are many subtasks that require 
listening to an utterance and entering the result into a field 
but the parameters (the utterance itself and the appropriate 
field) are different. Modelers currently accomplish some 
degree of reuse by copying and pasting. 

The ability to effectively represent the task is likely to be 
equally relevant for users with the goal of conducting 
cognitive research as interface evaluation and design. 
Perhaps it is slightly more important in the case of interface 
evaluation and design because real world interactive tasks 
are more likely to be relatively complex.  

Thus, requirements for the improvement of task knowledge 
specification (T1) include: a representation that abstracts 
away from the complexities of an architectural 
implementation, the ability to create general, reusable tasks, 
and the ability to compose more complex tasks from these 
reusable components.  

T2. Specifying Operator Skill 
The specification of operator skill (T2) is an explicit 
statement about the level of skill that an operator brings to a 
specific task (perhaps specified in terms of number of 
practice trials). In the GOMS framework, the specification 
of operator skill is accomplished implicitly by choice of 
method. If the modeler wishes to predict behavior early in 
practice, she chooses an appropriate method like the Key-
stroke Level Model (KLM) [4] and develops a model. If on 
the other hand a modeler wishes to predict behavior late in 
practice, she chooses a method like CPM-GOMS. This is 
the type of strategy Baskin and John used to predict 
behavior early and late in practice [2]. Kieras used a 
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different rule set in each of the two models to predict 
different levels of skill [8]. 

The alternative is to build a model in a learning architecture 
such as ACT-R and use the architectural mechanisms to 
generate predictions at multiple levels of practice. There is 
an enormous cost to doing this: it is far more difficult to 
build robust, functioning learning models than it is to build 
non-learning performance models at some fixed skill level. 
The nature of the learning is extremely sensitive to the 
details of the knowledge representation, and it is more 
difficult for modelers to debug code that they did not 
generate. 

There is also no easy way in any of the existing frameworks 
to model tasks that are heterogeneous mixes of routine, 
semi routine, and novice skill as are many real world tasks. 
To take an applied example from NASA exploration 
missions, the Mars mission uplink process is well-practiced 
(done on a daily basis) but the content of each day's mission 
plan is unique. Users pursing both cognitive research and 
interface evaluation and design will need to specify 
operator skill. However, the relevance of this functionality 
will vary more based on the particular user base, task, and 
domain being modeled rather than the modeler's focus on 
research versus design. 

In sum, the requirements for the specification of operator 
skill (T2) include: the ability to generate learning models 
with no additional cost beyond specifying the performance 
model, the ability to generate multiple levels of skill from a 
single task specification, and the ability to specify tasks 
composed of subtasks that are heterogeneous with respect 
to skill level. 

T3. Specifying The Environment (Interface) 
The specification of the environment or interface (T3) is the 
information about the device the model needs in order to 
make predictions. This specification can be simple or 
complex. However, in order to support efficient modeling, 
the goal should be to specify the minimum information 
necessary (i.e., only the points at which the user interacts 
with the environment). Otherwise, the modeler is in the 
position of having to code the interface or at least hook up 
the running code to a model. On the simpler side, tools (e.g. 
Apex-CPM) often require either the inputs to Fitts’s Law 
(distance and size) or the product of the Fitts’s Law 
calculation [10]. Based on Contextual Inquires conducted 
by the authors of modelers specifying an interface in Apex-
CPM [10], the process of measuring screen elements on a 
printout with a ruler can take several hours. This process is 
prone to measuring and input errors. CogTool, an existing 
system supports improved interface specification involving 
importing screenshots and indicating widgets in a 
WYSIWYG manner [9]. 

In addition to position and dimension information necessary 
to calculate targeting times using Fitts’s Law, often it is 
necessary to encode some form of interactivity within a 

model. For example, many systems exhibit a delay between 
when an action takes place and when feedback is received.  
As in the case of target specification, solutions to describing 
interactivity range from encoding specific events in a 
lightweight way to connecting models to running interfaces 
in the world. 

To generalize, requirements for the improvement of the 
specification of environment or interface (T3) include: a 
minimal description of the physical layout of the device 
abstracted above the level of code, automatic calculation of 
Fitts’s Law, the ability to define widgets whether on 
screenshots of existing interfaces or new interfaces in a 
WYSIWYG manner, and a simple notion of interactivity. 

T4. Specifying The Architectural Assumptions About 
Human Cognition 
The specification of the architectural assumptions about 
human cognition (T4) is the encoding of a theory of the 
fixed information processing structure of the mind. In 
practice, existing tools (ACT-R, Soar, Apex-CPM, etc.) 
encode these assumptions in a manner that makes them 
difficult to inspect, understand, or modify. For example, in 
ACT-R the assumptions are buried in underlying Lisp code. 
It is not currently possible to compare two models with 
different architectural assumptions without building 
multiple models. The user would have to develop models in 
different systems (e.g. one model in ACT-R and one in 
Soar). Specification of architectural assumptions is a task 
squarely in the realm of cognitive research. Interface 
evaluation and design requires a reasonable set of 
assumptions that underlie any particular model. 

Thus, requirements for the improvement of the specification 
of the architectural assumptions (T4) include: an explicitly 
stated set of assumptions, an abstraction above the code 
level, and an ability to run a single model with different 
architectural assumptions.   

T5. Specifying Strategy (How Skills Are Put Together) 
Task strategies are defined as the composition of existing 
behaviors or skills in service of the specific new task goals 
at hand. These existing behaviors or skills may be the 
lowest-level, architecturally defined primitives (such as the 
cognitive initiation of a button-press), or higher level 
existing skills, which are themselves composed of more 
primitive elements (such as the composition of a mouse-
movement-and-click strategy from a set of lower-level 
cognitive, perceptual, and motor primitives). The difference 
between the task level and strategy level is that the task 
specification describes the high-level requirements in terms 
of the interface itself, while the strategies specify how a 
particular cognitive-perceptual-motor architecture is 
actually used to realize the task requirements.  In short, 
strategies bridge the gap between the abstract task and a 
specific cognitive architecture. 

Defined this way, strategies encompass both GOMS-like 
methods [4] and multi-tasking strategies sometimes 
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associated with executive function, as realized in detail in 
EPIC work [15].  The latter may range from quite task-
specific to fairly general.  The EPIC work in particular has 
revealed the complexity of such executive strategies in even 
putatively simple multi-tasking situations. 

Whether the strategies are task-specific methods or 
executive multi-tasking methods, in existing approaches, 
strategies are also represented as code with its attendant 
problems. An effective modeling tool should support reuse 
of strategies across tasks and models. This is both a 
methodological and theoretical injunction: the modeler will 
find modeling more efficient to the extent that existing code 
can be reused, and the human operator that is being 
modeled is also bringing to bear existing skills that will be 
composed somehow to accomplish the novel task demands. 

Although specification of lower-level strategies may 
primarily be the province of basic cognitive research, it 
must be possible for a user involved in an interface design 
activity to specify new strategies as they develop novel 
interaction methods for which strategies do not yet exist. 
For the most part, users performing interface design 
activities should rely on reasonably complete libraries for 
standard interface strategies like move and click or click 
and drag. 

In sum, requirements for the specification of task strategies 
(T5) are similar to those of T2, and include: the ability to 
develop libraries of reusable strategies that work across 
tasks and models, and the ability to compose these 
strategies in the service of more complex tasks. 

T6. Extracting Meta-Information About Behavior From 
Model Output 
The extraction of meta-information about behavior from 
model output (T6) is the task of interpreting the behavior 
predictions that the model produces. Many systems produce 
trace output in which each low-level model action is 
documented. This type of trace is often many pages long 
and includes system oriented data (unique ID tags, long 
time/date stamps) which coupled with the sheer volume of 
information render it not human readable. Earlier manual 
methods and Apex-CPM have provided users with Gantt 
charts that are very long to scroll through and offer 
information at a small grain size (individual motor, 
perceptual, and cognitive operators of 50 milliseconds). 
Some systems provide only the total predicted time. This 
interpretation of predictions is relevant to both research and 
design activities. Users doing both activities would likely 
benefit by a high-level overview of their model to check for 
mistakes. Users engaged in interface design would benefit 
from suggestions as to the problems with the current 
task/interface combination (a particular move takes a long 
time or many items are stored in working memory at the 
same time). Users engaged in cognitive research, on the 
other hand, are likely to go from a high-level overview into 
a detailed representation like a Gantt chart where low-level 

assumptions about cognition are made explicit and can be 
verified. 

Thus, requirements for the improvement of the extraction of 
meta-information about behavior from model output (T6) 
include: a high level overview, an improvement suggestion 
facility, and appropriate detailed views.  

T7. Performing Overhead Tasks 
Performing overhead tasks (T7) is a broad category for the 
myriad of activities that do not directly contribute to a 
particular component such as the task or user interface but 
are nonetheless required in order to model. These tasks 
include: installation, file management, command line model 
execution, versioning, etc. Often these research toolkits are 
composed of multiple applications (e.g. development 
environment such as LISP, a text editor, a particular web 
browser) that are often costly or difficult to install. A task 
like file management may not appear to have a high cost, 
but as the number of models increases scalability becomes a 
concern. For example, users of CogTool were able to 
generate 300 models over a summer but found them 
difficult to manage (Bonnie John, personal 
communication). Managing hundreds of files by file system 
location and naming convention does not appear scalable. 
When a modeler works at the code level, using currently 
available tools, she must manage file versioning herself. 
Unless the modeler saves an explicit version (via “save as”) 
after each model run, which is time consuming, she cannot 
return to previous version of the model at will. For 
example, often mistakes are introduced and not noticed 
until several saves and iterations later. In these cases, the 
cause of the error can be difficult to reconstruct. 

Therefore, the requirements for the support of overhead 
tasks (T7) include: the ability to easily install and update a 
single application, a framework to manage the many model 
components, elimination of command line model execution, 
and a low overhead versioning scheme.  

Summary of Tasks 
Table 1 presents a summary of tasks (T1-T7) and their 
relevance to the disparate goals of cognitive research versus 
interface design and evaluation. Based on the above 
discussion, the tasks are broadly categorized as being of 
high, low, or variable relevance to research versus design.  

Component Tasks # Research  Design  

Task Knowledge T1 High High 

Operator Skill T2 Varies Varies 

Interface T3 Low High 

Architectural Assumptions T4 High Low 

Strategy T5 High Low 

Model Output T6 High High 

Overhead Tasks T7 High High 

Table 1. Comparison of Task Importance to Research 
versus Design Goals 
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The tasks (T1-T7) and their associated requirements listed 
in this section are by no means an exhaustive list of either. 
These requirements, defined by a first-principles approach 
to design (asking what an effective modeling support tool 
should look like), drove the design of X-PRT. They also 
serve as an opening position intended to spur discussion 
within the research community.  

DESIGN OF X-PRT 
While the focus of this work is the ability to model at 
different levels of experience, it is necessary to introduce 
the design of X-PRT at a high level in order to place 
particular functionality and design decisions in context.  

X-PRT, a cross platform Java application, is designed to 
fulfill the requirements that support the modeler’s task as 
described above. X-PRT’s interface metaphor, that of an 
Integrated Development Environment (IDE), was chosen 
for two reasons. First, the IDE-like multi-document project 
metaphor is appropriate for the large number of model 
components (task, user interface, architecture, strategy, and 
output) and the high likelihood that a model of a system 
will consist of multiple subtasks (e.g. withdraw, deposit, 
check balance, in the ATM context). Perhaps hundreds of 
tasks will comprise the task set for a particular domain to be 
drawn upon in composing larger tasks. Second, interface 
designers are likely to be familiar with the IDE metaphor 
based on knowledge of rapid prototyping tools such as 
Microsoft Visual Studio and web design tools like 
Macromedia Dreamweaver. The X-PRT interface is 
organized into 3 primary panes: a file pane to manage the 
model components (task, user interface, architecture, 
strategy, output), a view pane to view and edit the model 
components, and a run pane to run the model and generate 
predictions. 

The modeling tasks (T1-T7) will be used as a framework to 
systematically cover X-PRT design elements. They are 
presented in the order discussed above for consistency. As 
of this writing the design elements covered represent 
functionality already implemented in a first version of X-
PRT and user tested as described in the design process 
subsection at the end of this section. 

Design of Task Knowledge (T1) 
Given the requirement to represent the task as an 
abstraction above the code level, X-PRT provides a directed 
entry interface for the hierarchical specification of the task 
(Figure 1). The user explicitly specifies some of the same 
parameters that CORE requires and makes some parameters 
implicit. For example, using a tree representation for parent 
rather than the attribute value pair “parent=node ID.” Other 
parameters such as presentation color or unique id’s are 
automatically handled by the system and never presented to 
the user. 

The choice of a file-structure-like hierarchy is based on 
users’ familiarity with this cross-platform convention. 
Composing larger tasks from component tasks is supported 

by allowing hierarchy nodes (e.g. the “withdraw money” 
node below) to be copied and pasted along with all children 
such that a user can work on multiple tasks within a project 
and when ready can easily copy them into a larger task. 

 
Figure 1: Hierarchical task knowledge in X-PRT (ATM task). 

This design fulfills two of the requirements listed above: an 
abstraction above the code level and the ability to build 
larger tasks from component tasks. More sophisticated 
reuse, the ability to embed tasks within other tasks such that 
modifications to a task propagate to all embedded instances, 
is planned for future design and development as is 
designating and modeling from explicit templates. 
However, the current design’s improved legibility over 
code and the explicit presentation of required fields 
associated with each action (such as “Action” and “Target” 
in Figure 1) serve to guide the user to enter allowable 
values and reduce errors.  

Design of Operator Skill (T2) 
X-PRT aggregates level of skill and similar parameters in a 
single “Person” dialog box associated with each project (see 
figure 2). The user sets a slider that represents the desired 
level of skill.  

 
Figure 2: Dialog where level of skill parameters are set. 

Though the representation of skill as a slider is a relatively 
simple design choice, the entire application works to 
support this level of simplicity in order to predict multiple 
levels of skill rather than build multiple or more complex 
models to access this type of valuable prediction. A more 
thorough presentation of the underlying psychological 
theory and advances in the CORE engine that make such a 
simple presentation possible are discussed later in this 
paper. 
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This design fulfills the above requirement to generate 
predictions at multiple levels from a single model. 
However, it does not yet support heterogeneous mixtures of 
these skills. The next version of X-PRT will provide the 
ability to specify the level of skill for each node in the 
hierarchy. 

Design of The Environment or Interface (T3) 
X-PRT supports the specification of the user interface in a 
minimal WYSIWYG manner. If the user has an existing 
screenshot of the interface, she imports that image and 
identifies only interactive widgets relevant to her task.  She 
does this by dragging semi-transparent rectangles over them 
(much like specifying hot spots in Macromedia 
Dreamweaver). This is based on the method employed by 
CogTool, which has users import screenshots into 
Macromedia Dreamweaver, add actual hot spots, and export 
the HTML in order to get the positions and dimensions of 
the hot spots [9]. If on the other hand the user does not have 
a screenshot to import, the system labels each interactive 
widget with the name field on a plain background to 
distinguish it from other widgets. In both cases, each 
interactive widget must be named and can be precisely 
positioned by tweaking X and Y coordinates.  

A user interface can be created consisting of many screens 
(with or without screenshots) which can be managed 
(added, deleted, reordered) in thumbnail form in a manner 
similar to the slide thumbnail pane within Microsoft 
PowerPoint. X-PRT then calculates the Fitts’s Law 
estimates based on distances between widgets. A benefit of 
this approach is the modeler does not have to recalculate 
Fitts’s Law if a widget is moved (as part of a redesign) or if 
the task is changed to press buttons in a different order 
(meaning the distances between one button and the next 
change).  

This design fulfills three of the requirements set forth for 
interface description: to provide a physical description of 
interface layout abstracted above the level of code, enable 
automatic calculation of Fitts’s Law, and allow the use of 
existing screenshots or define a new interface.  

Design of Architectural Assumptions (T4) 
While most modeling methods and cognitive architectures 
embody a single set of architectural assumptions regarding 
human cognition, CORE encodes assumptions explicitly as 
constraints and provides the ability to run a given model 
with different assumptions. Users working on cognitive 
research have the option to encode different architectural 
assumptions and test their effect on behavior predictions. 
For example, Howes et al. encoded both ACT-R style 
assumptions as constraints and then modified those 
assumptions to encode EPIC style assumptions in order to 
explore the effect of the differences on the predicted 
behavior [13]. X-PRT supports and extends this capability 
by providing a level of abstraction that allows the modeler 
to reduce the work required to run a model using different 

architectures.  X-PRT allows multiple architectures to have 
a common interface so that no task changes are required to 
run the task with a different architecture. The common 
interface defines what values the user needs to define in her 
task for that set of architectures to run. For architectures 
that are too different to support the same interface, X-PRT 
converts the task to run under the new architecture interface 
as much as possible, minimizing the number of changes 
necessary.   

The current design fulfills the above requirement to provide 
an explicit representation of the architectural assumptions, 
and the capability to run the model under different 
architectural assumptions. The requirement to provide a 
representation above the code level is not addressed in the 
current version. There is an existing prototype of an 
architecture editor that must be tested, iterated, and 
integrated into the running version of X-PRT. 

Design of Strategy (T5) 
At present, the support for strategy specification primarily 
resides at the level of the CORE implementation; it is not 
yet completely supported in X-PRT. There are two 
fundamentally different ways that strategies may be 
specified in the model. First, X-PRT does support, in a 
limited fashion, making links between hierarchical task 
knowledge and specific strategies. This assumes the 
existence of a library of strategies from which complex 
tasks may be hierarchically composed. For each action 
defined within the task, the user is prompted to specify the 
specific strategy used (e.g. "click" as shown in Figure 1). 
Based on the strategy chosen, an appropriate set of 
parameters is presented. While this represents a significant 
advance over detailed coding, it still falls short of a general 
solution that systematically supports new strategy 
composition from architectural primitives. 

One possibility that needs to be to explored, however, is 
exploiting the capabilities for hierarchical task specification 
to build the strategies as well. Even micro-strategies such 
move-and-click can be given meaningful hierarchical 
descriptions, with internal components that may be 
reusable. The challenge lies in making the cognitive 
architectural primitives accessible in the same way that the 
existing strategies like "click" are now accessible in the 
hierarchy editor (figure 1). 

A second and novel way that CORE (and by extension X-
PRT) supports strategy specification is by partially 
eliminating the need for strategy specification.  This is 
possible because some detailed and complex aspects of 
behavioral control—for example, anticipatory eye 
movements or anticipatory hand positioning—emerge from 
CORE’s automatic search for the optimal way to satisfy the 
task and architectural constraints.  In short, users can focus 
on the higher task-level strategic composition (“perform 
these two task operations as quickly as possible in 
sequence”), and leave the CORE modeling engine to work 
out the precise details of how to stitch together the task-
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level operations. The details of this stitching-together are 
precisely what constitute multi-tasking executive strategies 
in a model like EPIC.  

Design of Model Output (T6) 
In terms of output visualization, X-PRT offers an 
improvement upon the traditional horizontally scrolling 
Gantt chart in the form a focus-plus-context style interface. 
The Gantt chart is presented in a 10% scale overview at the 
bottom of the screen (overview scrolls if necessary). In the 
overview area, the user can click and drag to move a 
rectangle that represents the view and can resize the 
overview area itself from the default 10% by increasing or 
decreasing its size with a standard pane resize bar. 

This design provides a detailed view of the data and goes a 
small part of the way towards providing a high level 
overview with the context pane. However, the current 
overview is visual rather than conceptual. In practice, this 
requirement is not met nor is the requirement for a 
suggestion facility.   

Design of Overhead Tasks (T7) 
X-PRT separates and organizes each model component for 
the purposes of opening, editing, associating, copying and 
composing these components. Within X-PRT, the task is 
the central component around which other components are 
organized based on the understanding that the modeler’s 
goal is to predict behavior for a particular task (projects can 
contain arbitrary numbers of tasks). For example, if a 
modeler is attempting to assess interfaces A and B, X-PRT 
manages the representation of both user interfaces and the 
linkage between the interfaces and the task. X-PRT does 
not rely on the user to remember this type of linkage, nor do 
files have to be explicitly manipulated in an external file 
system, as they are all stored within the context of a project. 

To mitigate the problems with manual versioning, such as 
making a mistake and not being able to quickly restore the 
component’s original state, X-PRT takes a snapshot of the 
model components that serve as inputs as well as the output 
of each run (currently in Gantt chart form). The modeler 
can view this run history with a single click and return to 
the earlier version of a model component with a second 
click. 

Existing tools often rely on the command line to run models 
and generate behavior predictions as output. X-PRT 
provides a consistent, application-internal method of 
running models and generating behavioral predictions. The 
run pane allows the user to select a model, an associated 
architecture, and press the run button. X-PRT takes care of 
all the overhead necessary to make command line calls and 
pass arguments in order to run a model. 

X-PRT is a standalone application installed by double 
clicking, as are commercial applications. It installs 
necessary elements transparently (e.g. the Sicstus Prolog 
environment). Standalone application implementation also 

allows the system to provide standard functionality like 
software update, which prompts users to download a new 
version. 

This design addresses all the key overhead tasks observed 
to date, including file management, versioning, command 
line execution, and installation. However, overhead is a 
broad category and in extended use it is likely that users 
will uncover more of these types of challenges. 

Design Process 
Thus far, the discussion has covered the design of X-PRT 
itself and not the design process, which is also worth 
mentioning. The team has followed a standard HCI iterative 
design and test method. The first round of user testing is 
complete (number of users=5). Some design changes have 
been implemented while others are prioritized for 
development along with other work. The goal for this first 
round of user testing was to validate the X-PRT framework 
and IDE project metaphor. While the user tests uncovered 
many usability problems, they were primarily lower level 
problems like the fact that command line users expected to 
save explicitly rather than having the system do it 
automatically. Overall, the framework appeared to support 
the sample task of interface specification, task knowledge 
modification, model run, and output interpretation. As the 
work progresses, further iterations of the tool will be tested 
and metrics such as time on task will be tracked. 

The Underlying Modeling Engine: CORE 
In order to enable several of the features described in the 
design section such as easy description of operator skill and 
compositional reuse of tasks, X-PRT takes advantage of 
many theoretical advances of Cognitive Constraint 
Modeling (CCM) [7,13,21].  CCM represents a new 
approach to cognitive modeling that is characterized by 
three principles that distinguish it from existing simulation-
based approach such as production system architectures. (1) 
Descriptions of behavior are derived via constraint 
satisfaction over explicitly declared architectural, task, and 
strategy constraints. One significant effect that this has on 
the practice of modeling is that architectural theory is 
uniformly encoded as explicit constraints that are 
inspectable and modifiable in the same way as task and 
strategy constraints. The generation of behavioral 
predictions is essentially an automated proof derivation 
from these explicit assumptions. (2) The details of 
behavioral control emerge in part from optimizing behavior 
with respect to objective functions intended to capture 
general strategic goals (e.g. go as fast as possible). A 
significant effect that this has on the practice of modeling is 
that the modeler is relieved of some of the difficult work of 
micro-programming detailed cognitive/perceptual/motor 
strategies for particular tasks. Rather, these details emerge 
from the behavior derivation process when it is guided by 
the explicitly declared objective goals. (3) The architectural 
building blocks are based on an ontology of resource-
constrained cascaded processes. This provides a simple but 
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extremely powerful way to construct complex behaviors 
from information processing primitives that specify the 
basic cognitive, perceptual, and motor processes and how 
they communicate. This ontology has been used to specify 
versions of cognitive architectures based on the Model 
Human Processor, ACT-R, and Epic [7,13,21]. All of these 
principles have been realized in an implemented 
computational modeling system called CORE (Constraint-
based Optimizing Reasoning Engine), which uses 
constraint-satisfaction techniques that are guaranteed to 
yield optimal solutions. 

EMPIRICAL DATA AND MODEL PREDICTIONS 
Recently, CORE has been used to develop models of 
learning hierarchically structured tasks.  Although it might 
seem that a modeling approach that generates optimal 
behavior would be suitable only for predicting highly 
skilled behavior, the approach can be applied quite 
naturally to predicting novice and intermediate skill levels 
as well.  A key to this success is the discovery that 
hierarchical task structures not only provide a natural high 
level task description for modelers to work with, but are 
also the cognitive structures that mediate performance 
during task acquisition.  

Consider first the role of task hierarchies as a high-level 
task specification. Goal hierarchies are ubiquitous in 
cognitive modeling and play a central role in GOMS-based 
methods. For many routine HCI tasks they are a natural 
specification because they directly reflect the task structure.  
See Figure 1, in the X-PRT design section, for part of a 
hierarchical description of a banking task.  

The challenge in using such high-level specifications for 
developing millisecond level predictions of skilled 
performance is that humans organize their behavior in 
highly flexible ways that violate the putative encapsulation 
of the subtasks [10,13]. For example, humans exhibit 
anticipatory behaviors, where behaviors associated with a 
later subtask may intrude and intermix with behaviors 
associated with an earlier subtask. This kind of flexible 
scheduling is characteristic of human skill, but is at odds 
with traditional notions of encapsulated, reusable 
components. 

How does the CCM approach, and CORE in particular, 
solve this problem? The answer is that CORE does not 
"execute" the task hierarchy.  Rather, there is first a 
transformation of the hierarchy into independent task and 
strategy constraints, which, together with architectural 
constraints plus the optimizing constraint satisfaction, 
naturally yield the required flexible behavior.  In this way, 
the hierarchy is taken as an abstract specification of task 
knowledge, rather than a control structure.  

It is possible, however, to build CORE models that do treat 
the hierarchy as a control structure – in particular, as a 
structured memory that is retrieved piece-by-piece to 
control behavior.  A natural assumption is that this kind of 

memory retrieval guides performance early in task 
acquisition, and skilled behavior emerges in part as a 
function of gradually eliminating these explicit memory 
retrievals [1]. ACT-R's production compilation mechanism 
provides a detailed process model of how this learning 
might take place.  CORE is able to abstractly capture this 
kind of skill acquisition with two simple additions to the 
highly skilled model.  First, memory retrieval processes are 
added to access the task knowledge, and behavior is 
contingent upon the results of these retrievals. Second, 
learning is modeled in an abstract way by simply flattening 
the task hierarchy. This is the mechanism that supports 
manipulation of operator skill level (T2) as discussed is the 
design section above. In all cases, behavior is generated in 
the same way via constraint satisfaction.  

There are two major qualitative empirical predictions that 
this model makes.  First, early in practice the hierarchical 
memory retrievals will serve as barriers to flexible 
scheduling of behaviors; thus, anticipatory behaviors will 
only emerge as these retrievals are eliminated.  Second, 
early in practice the hierarchical memory retrievals will 
increase response latencies, and more specifically, will 
increase latencies as a direct function of hierarchy depth.  
This qualitative pattern is shown in Figure 3, which plots 
the model's reaction times to button presses in a mouse-
driven ATM banking task. 

 
Figure 3: Model predicted times for button presses in an ATM 

task [13]. 

The task steps (in this case button presses) are grouped into 
large, medium, and small hierarchical transition, reflecting 
the amount of memory retrieval required to access the 
relevant bit of task knowledge to press the key.  Early in 
practice, the operator must traverse the entire hierarchy as 
specified by the modeler.  Midway through practice, 
assuming a four-tier hierarchy, the retrievals associated 
with third or lowest set of non-leaf nodes of the hierarchy 
are removed. Late in practice the second level of the 
hierarchy is removed and the operator represents what were 
once individual sub-goals as a single goal. Figure 3 shows 
this collapse, so that the end point converges on skilled 
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behavior in which the hierarchical structure is no longer 
evident.  

Recently, Lewis, Vera, and Howes [13] have developed an 
empirical paradigm that tests this qualitative prediction, by 
varying hierarchical structure (via instruction) while 
carefully controlling for other aspects of the task and 
interface. Results from an initial set of experiments reveal 
not just a single smooth learning curve for the overall task 
performance, but separate learning curves as a function of 
hierarchical task boundaries (Figure 4) [13]. Major subtask 
boundaries (at the start of major new subtasks) produced 
longer reaction times than minor boundaries within the 
lowest-level task groupings, and so on, as predicted by the 
model. In short, task hierarchies are not just convenient 
high-level notations but psychologically real control 
constructs which guide behavior during task acquisition.  
Unlike the model, there appears to be some continued effect 
of the task hierarchy quite late in practice, and the basis of 
this effect is currently being explored. 

This is similar to the effects of production compilation in 
ACT-R (an ACT-R model of this task has been developed), 
but the approach does not depend on modeling the detailed 
processes of learning, and it makes no representational 
assumptions beyond that of the task hierarchy. The method 
will initially be restricted to modeling the effects of 
learning the task structure-it will not, for example, be able 
to model attentional learning (where to look for things on 
the interface). It is therefore restricted in scope, but 
represents an important step forward in incorporating 
learning predictions into easy-to-use modeling tools. 

  
Figure 4: Reaction times for button presses an ATM task [13]. 

REFLECTIONS AND COMPARISONS 
X-PRT represents a new approach to supporting cognitive 
modeling resulting from a combination of systematic user-
centered design with recent developments in cognitive 
modeling based on constraint-satisfaction as implemented 
in CORE. It is worth summarizing here what we believe are 
its important features, highlighting what it has in common 
with other approaches and what makes it distinctive. 

1. X-PRT was designed from the ground-up to support a 
comprehensive set of modeling activities in an integrated 
fashion. While it shares with both high-level languages 
(such as ACT-Simple, TAQL [18,22] and modeling 
toolkits (such as CogTool and user modeling design tool 
[9,16]) the goal of making modeling easier, we believe no 
other tool addresses the range of modeling activities 
represented in Table 1. 

2. X-PRT provides rudimentary support for the easy 
generation of models at multiple skill levels from a single 
task specification.   The ability to model at multiple skill 
levels is a feature of learning architectures such as ACT-
R, but these approaches require considerable expertise in 
the details of the architectures and learning mechanism.  
Furthermore, none of the high-level languages that 
compile into ACT-R or Soar code systematically support 
learning. We believe that X-PRT and CORE represent an 
important and novel step toward developing tools that 
make the application of learning theory accessible to a 
broader user community. 

3. X-PRT shares with GOMS-based approaches (and nearly 
all high-level modeling languages) the use and benefits of 
hierarchical task descriptions. But hierarchies play an 
even more extensive role in X-PRT and CORE: they are 
both the method of task description and compositional 
reuse and an important part of the cognitive theory that 
supports the generation of behavior at multiple skill 
levels. This is in large part what makes the learning 
model in X-PRT and CORE powerful and usable: it 
exploits the existing natural hierarchical specifications. 

4. Finally, perhaps the most unique feature of X-PRT 
modeling is that some complex aspects of  behavioral 
control (e.g., micro-strategies for making anticipatory 
movements) emerge automatically from the search for 
the most adaptive behavior given the posited objective 
function, combined with task, architecture, and partial 
strategic constraints. We believe this is a theoretical 
advance in cognitive modeling, but it is also a usability 
advance, because it reduces the burden on the modeler for 
strategy specification. 

FUTURE WORK 
Although we are clearly in the beginning stages of this 
project, the initial results are promising: X-PRT supports 
the rapid development of detailed models of routine GUI 
interactions at multiple skill levels, based on a single high-
level hierarchical task specification. One of the early 
discoveries in this project is the surprisingly powerful set of 
roles that hierarchies play: they serve as both a natural task 
specification and a model of the cognitive structures that 
mediate task acquisition.  This dual role is directly 
supported by CORE, and made easily accessible by X-PRT. 

There is significant work remaining on both the systematic 
evaluation of the tool (and comparison to existing modeling 
tools), and extending the functionality with respect to tasks 
T1-T7 identified earlier. This work highlights just one 
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interesting future direction that bears on learning models.  
As discussed earlier, skill level (T2) is currently set at the 
project (i.e. model) level rather than at the individual 
subtask level, but it is clear that most tasks of applied 
interest will be heterogeneous mixtures of routine and novel 
components.  The current plan is to again exploit the 
hierarchical task specifications by permitting modelers to 
specify skill parameters for any individual subtask in the 
overall task, as well as permitting modelers to specify 
performance parameters associated with cross-cutting skills 
such mouse-based target tracking. The development of X-
PRT along these lines will continue to push the state-of-the-
art in both basic research and applied cognitive modeling. 
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